May 012013
 

I brought this issue up on twitter today because it got me thinking. Many hockey analytics dismiss face off winning % as a skill that has much value but many of the same people also claim that zone starts can have a significant impact on a players statistics. I haven’t really delved into the statistics to investigate this, but here is what I am wondering.  Consider the following two players:

Player 1: Team wins 50% of face offs when he is on the ice and he starts in the offensive zone 55% of the time.

Player 2: Team wins 55% of face offs when he is on the ice but he has neutral zone starts.

Given 1000 zone face offs the following will occur:

Player 1 Player 2
Win Faceoff in OZone 275 275
Lose Faceoff in Ozone 275 225
Win Faceoff in DZone 225 275
Lose Faceoff in Dzone 225 225

Both of these players will win the same number of offensive zone face offs and lose the same number of defensive zone face offs which are the situations that intuitively should have the greatest impacts on a players statistcs. So, if Player 1 is going to be more significantly impacted by his zone starts than player 2 is impacted by his face off win % losing face offs in the offensive zone must still have a significant positive impact on the players statistics and winning face offs in the defensive zone must must still have a significant negative impact on the players statistics. If this is not the case then being able to win face offs should be more or less equivalent in importance to zone starts (and this is without considering any benefit of winning neutral zone face offs).

Now, I realize that there is a greater variance in zone start deployment than face off winning percentage, but if a 55% face off percentage is roughly equal to a 55% offensive zone start deployment and a 55% face off win% has a relatively little impact on a players statistics then a 70% zone start deployment would have a relatively little impact on the players statistics times four which is still probably relatively little.

I hope to be able to investigate this further but on the surface it seems that if face off win% is of relatively little importance it is supporting of my claim that zone starts have relatively little impact on a players statistics.

 

Mar 142013
 

I often see people using zone starts and/or quality of competition as a way to justify any players unexpectedly poor or unexpectedly good play. Player X has a bad goal or corsi ratio because he plays all the tough minutes (i.e. the defensive zone starts and against the oppositions best lines). I am pretty certain that quality of competition is vastly over emphasized (everyone plays against everyone to some extent) and is vastly overshadowed by individual skill and quality of teammates, and I think zone starts do as well.

Eric Tulsky at NHL Numbers.com posted a good review of the research into the zone start effects on corsi statistics and I recommend people give that a read. I want to look into the issue a little further though. Most of the attempts to identify the impact of zone starts on a players stats have been inferred by looking at the league-wide correlations or by actual counting of how many shots are taken after a zone face off. Both of these have their faults. As Eric Tulsky pointed out, taking a correlation of every players corsi with their zone start stats doesn’t take into account that it is the top line players that usually get the offensive zone starts and thus this likely over estimates the impact as these players do take more shots regardless of their zone start. Eric Tulsky also took the time to count the number of fenwick events that occur between an offensive zone face off and the time the puck leaves the offensive zone and estimated that to be 0.31. This would imply that every extra offensive zone start a player takes is worth 0.31 fenwick events. Of course, this doesn’t take into account that the best offensive players in the league typical get more  offensive zone starts but it also doesn’t consider what happens after the puck leaves the zone. If the puck leaves the zone under the opposing teams control there is probably a negative fenwick effect for the next several seconds of play reducing the 0.31 number further.

I want to get beyond these issues by taking a look at how zone starts affect individual players. I have previously argued that after 10 seconds of an offensive/defensive zone face off the majority of the benefit (or penalty) of an offensive (or defensive zone) face off has worn off. I wanted to take it a bit further to be sure that there is no residual effect and chose to conduct this analysis using a 45 second cut off. So, any time within 45 seconds of an offensive or defensive zone face off with no other stoppages in play will be eliminated in my face off adjusted data. This should eliminate pretty much every second of every shift that started with an offensive or defensive zone face off leaving just the play that occurred after a neutral zone face off or on the fly changes. I am going to call this ice time F45 ice time and it will represent ice time that is not in any way affected by zone starts. With this in mind, I will take a look at the differences between straight 5v5 stats and the F45 stats and the differences will give me an indication of how significant zone starts impact a players stats.

To do this I will look at both corsi for and corsi against stats on a per 20 minutes of ice time basis. It should be noted that corsi rates are about 7.5% higher during the f45 play (goal rates are ~15% higher!) so I will reduce the f45 corsi rates by 7.5% to account for this and conduct a fair comparison (previous zone start studies may have been impacted by this as well). Now, let’s take a look at eight players (Manny Malhotra, Dave Bolland, Brian Boyle, Jay McClement, Tanner Glass, Brandon Sutter, Adam Hall, and Taylor Pyatt) with an excess of defensive zone starts.

OZ% DZ% OZ%-DZ% FF20 FA20 FF%
Malhotra 12.2 54.6 -42.4 -3.09% 1.09% -1.0%
Bolland 19.8 40.5 -20.7 8.94% -5.25% 3.5%
B. Boyle 21.0 40.2 -19.2 2.87% 8.74% 0.3%
McClement 24.8 41.9 -17.1 -0.31% 1.34% -0.4%
Glass 20.5 37.1 -16.6 4.39% -6.00% 2.6%
Sutter 23.1 36.6 -13.5 -2.67% 2.32% -1.2%
Hall 20.7 33.9 -13.2 -4.06% 4.59% -2.2%
Pyatt 24.0 36.4 -12.4 0.38% -0.25% 0.2%
Average 20.8 40.2 -19.4 0.81% 0.82% 0.23%

The FF20 and FA20 columns show the % change in from 5v5 play to F45 play and the FF% column shows the 5v5 FF% – F45 FF%. The averages are a straight average, not weighted for ice time or zone starts. For players that have a significant defensive zone bias we would expect their F45 play to exhibit an increase in FF20 and a decrease in FA20 resulting in an increase in FF%. In bold are the circumstances where this in fact did happen. As you can see, this isn’t the majority of the time. It is actually kind of surprising that these heavily defensive zone start biased players didn’t see a significant and systematic improvement in their fenwick rates.

Now, let’s take a look at eight players (Henrik Sedin, Patrick Kane, Maian Gaborik, Justin Abdelkader, Kyle Wellwood, Tomas Vanek, John Tavares, Jason Arnott) who had a heavy offensive zone start bias.

OZ% DZ% OZ%-DZ% FF20 FA20 FF%
H. Sedin 49.3 16.2 33.1 -3.72% 1.81% -1.4%
P. Kane 41.4 20.3 21.1 5.94% 4.66% 0.3%
Gaborik 39.0 22.8 16.2 0.60% 2.32% -0.4%
Abdelkader 37.5 26.0 11.5 3.93% 3.49% 0.1%
K. Wellwood 36.9 27.6 9.3 4.54% -2.32% 1.7%
Vanek 36.2 27.2 9.0 -3.39% 1.06% -1.1%
Tavares 35.8 27.2 8.6 -2.39% 1.83% -1.0%
Arnott 36.4 28.0 8.4 -3.41% 1.81% -1.3%
Average 39.1 24.4 14.7 0.26% 1.83% -0.39%

For offensive zone start biased players we would expect to see their FF20 decrease, FA20 increase and FF% decrease when we remove their zone start bias. This is mostly true for FA10 (only Wellwood deviated from expectations) but less true for FF20 and FF% and overall the adjustments were relatively minor. Henrik Sedin had the greatest negative impact to his FF% but it only took him from a 55.2% fenwick player to a 53.8% fenwick player which is still pretty good. This could very well be an upper bound on the benefit of excessive offensive zone starts.

Eric Tulsky also presented a paper at the recent Sloan Sports Analytics Conference in which he suggested that a successful zone entry via carrying the puck in is worth upwards of 0.60 fenwick and upwards of 0.28 fenwick on a dump in. As pointed out earlier, Eric Tulsky counted o.31 fenwick between an offensive zone face off and the puck clearing the zone so and if the other team is clearing the zone with control of the puck, it is certainly possible that they will generate almost as many shots on their subsequent counter-rush essentially negating much of the benefit of the offensive zone start. Without studying zone exits and how frequently zone exists result in successful zone entries into opposing teams end we won’t know for sure, but the data shown above indicates that this might be the case.

The next question that might be worth exploring is, if there is no significant benefit to starting your offensive players in the offensive zone, is there a penalty? For example, might it be better for the Canucks to start the Sedin’s solely in the defensive and neutral zones on the theory that their talent with the puck will allow them to more frequently carry the puck into the offensive zone which, as Eric Tulsky showed, more frequently results in shots and goals. I am not certain of that but might be worthy of further investigation.  I suspect again any benefit/penalty of any zone start deployment will largely be overshadowed by the players individual ability and the quality of their line mates. The ability to win puck battles, control the puck and move it up the ice is the real driver of stats, not usage of the player.

All of this is to say that coaching strategy (at least player usage strategy) is probably not a significant factor in the statistical performance of the players or the outcomes of games and I suspect, as I previously found, the majority of the benefit of an offensive zone start is those situations where you win a face off, take a shot resulting in a goal or the goalie catching it or covering it for another face off.  If the play goes beyond that individual talent (puck retrieval for example) takes over and the opposition will get an opportunity to counter attack. This is why, as I previously determined, eliminating the first 10 seconds after a face off is sufficient for eliminating the majority of the effects of a zone start and even then, the effects are probably not as significant as we think they should be.