Apr 192013
 

Tyler Dellow has a post at mc79hockey.com looking at zone starts and defensemen and if you read it the clear conclusion is that zone starts seem to matter quite a bit. In the third chart you can see that defensemen who get the most extreme defensive zone starts have an average corsi% of 44.7% while the average corsi% for defensemen with the most extreme offensive zone starts is 53.3%. This would seem to indicate that for defensemen zone starts can impact your corsi% anywhere from -5.3% to +3.3%. This is far more significant than I have estimated myself using a different methodology so I pondered that part of the reason for this is that when you start in the defensive zone you are playing with weaker quality of teammates than when you start in the offensive zone. My reasoning is that players that get used primarily in the defensive zone are often weak offensive players as if you are a good offensive player you will be given offensive opportunities. I wanted to explore this concept further and that is what I present to you here.

Unlike Tyler Dellow I used forwards in my analysis but it is unlikely that this will have a major impact in the analysis as forwards and defensemen are always on the ice together. One difference between my analysis and Tyler Dellow’s is I used data from stats.hockeyanalysis.com where as Tyler used stats from behindthenet.ca. Behindthenet.ca includes goalie pulled situations in their data and this has the potential to greatly emphasize the impact of zone starts. I feel it is important to eliminate this factor so I have it removed from the data. I also only used 2011-12 data but that shouldn’t have a major impact on the results.

So, my theory is that players who start in the defensive zone are weaker players overall. The challenge to this is that players who start with players that start frequently in the defensive zone likely start frequently in the defensive zone themselves and thus their stats are subject to zone start effects so if they have weak stats we don’t know whether they are due to the zone starts or because they are weak players. My solution was to look at the players zone start adjusted stats that I have on stats.hockeyanalysis.com. These stats ignore the first 10 seconds after a zone face off as it has been shown that the majority of the benefit/penalty of a zone face off has largely dissipated after 10 seconds. I understand that it may seem weird to use zone start adjusted data in a study that attempts to estimate the impact of zone starts but I don’t know what else to do.

I want to also point out that I will be using ZS adjusted FF% team mates when the team mates are not on the ice with the player and this may also mitigate the ZS impact on the teammates stats. My reasoning is, if a player has an extensive number of defensvie zone starts, it is quite possible that when his team mates are not playing with him their zone starts are more neutral or maybe even offensive zone biased. It if there ever was a way to get a non-zone start impacted FF% to use as a QoT metric this is probably the best we can do.

Ok, so what I did was compare a players 5v5 FF% (fenwick %) and zone start adjusted 5v5 TMFF% (zone start adjusted FF% of teammates when team mates are not playing with him) and came up with the following:

FFPct_vs_TMFFPct_by_ZS

As you can see, TMFF% does seem to vary across zone start profiles as I had hypothesized though to a lesser extent than the players zone start influenced FF% which is to be expected. So, if we subtract TMFF% from FF% we get the following chart:

FFPct-TMFFPct_by_ZS

This chart indicates that the zone start impact on forwards once adjusted for quality of teammates (as best we can) ranges from -2.5% to +2.15% which is significantly lower than the -5.3% to +3.3% estimate that Tyler Dellow came up with for defensemen without adjusting for quality of teammates and using goalie pulled situations included in the data. That said, this is still more significant than my own estimates when I compared 5v5 data to 5v5 data with the first 10 seconds after a zone start ignored. When I did that I calculated the impact on H. Sedin’s FF% due to his heavy offensive zone starts to be +1.4% to his FF% and considered this an upper bound. To investigate this further I plotted the average difference between 5v5 FF% and my 5v5 zone start adjusted FF% and I get the following:

FFPct-ZSAdjFFPct_by_ZS

The above is an estimate of the average impact of zone starts using my zone start adjustment methodology which ignores the first 10 seconds after a zone face off. This is significantly lower than either of the previous 2 estimates as we can see in this summary table:

Methodology ZS Impact Estimate
T. Dellow’s estimate for defensemen -5.3% to +3.3%
My TM Adjusted estimate for forwards -2.5% to +2.15%
My 10 second after Zone FO adjustment for forwards -0.5% to +0.41%

I am pretty sure none of what I have said above will put an end to the impact of zone starts on a players statistics debate but at the very least I hope it sheds some light on some of the issues involved. For me personally, I have the most confidence in my zone start adjustment method which removes the 10 seconds after a zone face off. My reasoning is studies have shown that the effect of a zone face off is largely eliminated within the first 10 seconds (see here or here) and also because it is the only methodology that compares a player to himself under similar playing conditions (i.e. same season, almost identical QoT, QoC and situation profiles) eliminating most of the opportunity for confounding factors to influence the results. If this is the case, the impact of zone starts on a players stats is fairly small to the point of being almost negligible for the majority of players.

 

Sorry, the comment form is closed at this time.