For those familiar with my history, I have been a big proponent that there is more to the game of hockey than corsi and that players can certainly drive on-ice shooting percentage. I have not done much work at the team level, but now that I have team stats up at stats.hockeyanalysis.com I figured I’d take a look.

Since shooting percentages can vary significantly over small sample sizes, my goal was to use the largest sample size possible. As such, I used 5 years of team data (2007-08 through 2011-12) and looked at each teams shooting and save percentages over that time. During those 5 years Vancouver led all teams in 5v5 ZS adjusted save percentage shooting at 10.69% while Columbus trailed all teams with a 8.61% shooting percentage. What’s interesting to note is the top 6 teams are Vancouver, Washington, Chicago, Philadelphia, Boston and Pittsburgh, all what we would consider the teams with the best offensive talent in the league. Meanwhile, the bottom 5 teams are Columbus, Los Angeles, Phoenix, Carolina, and Minnesota, all teams (except maybe Carolina) more associated with defensive play and a defense-first system.

As far as save percentage goes, Phoenix led the league with a 91.83% save percentage while the NY Islanders trailed with an 89.04% save percentage. The top 5 teams were Phoenix, Boston, Anaheim, Nashville, and Montreal. The bottom 5 teams were NY Islanders, Tampa, Toronto, Chicago and Ottawa. Not surprises there.

As far as sample size goes, teams on average had 7,627 shots for (or against) over the course of the 5 years which gives us a reasonable large sample size to work with.

Now, in order to not use an extreme situation, I decided to compare the 5th best team to the 5th worst team in each category and then determine the probability that their deviations from each other are solely due to randomness. This meant I was comparing Boston to Minnesota for shooting percentage and Montreal to Ottawa for save percentage.

As you can see, there isn’t a lot of overlap, meaning there isn’t a large probability that luck is the reason for the difference between these two teams 5 year save percentages. In fact, the intersecting area under the two curves amounts to just a 6.2% chance that the differences are luck driven. That’s pretty small and the differences between the teams above Boston and below Minnesota would be greater. I think we can be fairly certain that there are statistically significant differences between teams 5 year shooting percentages and considering how much player movement and coaching changes there are over the span of 5 years it makes it that much more impressive. Single seasons differences could in theory (and probably likely are) more significant.

The save percentage chart provides even stronger evidence that there are non-luck factors at play. The intersecting area under the curves equates to a 2.15% chance that the differences are due to luck alone. There is easily a statistically significant differences between Ottawa and Montreal’s 5 year save percentages. Long-term team save percentages are not luck driven!

So, the next question is, how much does it matter? Well, the average team takes approximately 1500 5v5 ZS adjusted shots each season. The differences in shooting percentage between the 5th best team and the 5th worst team is 1.27% so that would equate to a difference of 19 goals per year during 5v5 ZS adjusted situations. The difference between the 5th best and 5th worst team in save percentage is 1.5% which equates to a 22.5 goal difference. These are not insignificant goal totals and they are likely driven solely by the percentages.

Now, how does this equate to differences in shot rates? If we take the team with the 5th highest shot rate and apply a league average shooting percentage and then compare it to the team with the 5th lowest shot rate we would find a difference of 17.5 goals over the course of a single season. This is slightly lower than what we saw for shooting and save percentages.

What is interesting is this (the percentages being more important than the shot rates) is not inconsistent with what we have seen at the individual level. In Tom Awad’s “What makes Good Players Good, Part I” post he identified 3 skills that good players differed from bad players. He identified the variation in +/- due to finishing as being 0.42 for finishing (shooting percentage), 0.08 for shot quality (shot location) and 0.30 for out shooting which would equate to out shooting being just 37.5% of the overall difference. I also showed that fenwick shooting percentage is more important than fenwick rates by a fairly significant margin.

Any player or team evaluation that doesn’t take into account the percentages or assumes the percentages are all luck driven is an evaluation that is not telling you the complete story.